DOI: 10.1007/s00128-005-0709-9

Effects of an Environmental Estrogen on Male Gulf Pipefish, Syngnathus scovelli (Evermann and Kendall), a Male **Brooding Teleost**

N. Ueda,¹ C. Partridge,^{1,*} J. Bolland,¹ J. Hemming,² T. Sherman,¹ A. Boettcher¹

¹ University of South Alabama, Department of Biological Sciences, LSCB 124 Mobile,

AL 36688, USA ² United States Fish and Wildlife Service, 1601 Balboa Avenue, Panama City, FL 32405, USA

Received: 18 May 2004/Accepted: 30 March 2005

Environmental estrogens have been implicated in hormonal disruption in wildlife populations (McLachlan and Korach 1995). Reported effects include increased plasma levels of estrogen responsive proteins, testes atrophy, reproductive

^{*} Present address: Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA

Correspondence to: A. Boettcher

aquaria at temperatures of 25 - 28°C. Reverse osmosis water supplemented with 0.54 mM MgSO₄, 0.058 mM KCl, 0.44 mM CaSO₄ and 1.32 mM NaCO₃ in order to obtain an alkalinity of 65 mg/L and a hardness of 100 mg/L was used. The salinity was brought to 5 psu by the addition of 51.3 mM NaCl to decrease <u>. 1 e ilius tueniakiu - fitani iliu e els ustik leenkiti issa kiki issuli</u>

pipefish were examined in a laboratory based experiment. EE2 was chosen as a model for environmental estrogens because of its relative stability. Fish were held in the laboratory for more than two weeks prior to exposure, housed in 40 L

reales ous list	+ :-	ممالمسمسملمم	1r +1ka ma+	allia kandin.	/ T		ባበማነ
}							
							-
•							
•							
1							
			(=				
		1 _					
1							
t							
1							
,							
1							
y							
•							
•							
•							
<u> </u>							
	•						
Feminization	of	pigmentation	pattern,	including	overall	darkening	and
, 1 <u> </u>	_ £ 41	11!			T	1	771. °.,
-							
1.5							
-					-		
							•
,							
I .							

